20575 measured reflections 2724 independent reflections

 $R_{\rm int} = 0.100$

1782 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6a-Acetoxyepoxyazadiradione

Wisanu Maneerat,^a Hoong-Kun Fun,^b* Taweesak Buatip,^a Surat Laphookhieo^a and Suchada Chantrapromma^c*

^aSchool of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th

Received 15 July 2007; accepted 18 July 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.006 Å; R factor = 0.051; wR factor = 0.125; data-to-parameter ratio = 7.8.

The title limonoid compound [systematic name: $(8S^*, 10R^*)$ -17-(3-furyl)-4,4,8,10,13-pentamethyl-3,16-dioxo-6,7,9,11,12,17hexahydro-14,15-epoxy-5*H*-cyclopenta[*a*]phenanthrene- $6\alpha,7\alpha$ -diyl diacetate], C₃₀H₃₆O₈, was isolated from *Chisocheton siamensis*. The molecule contains four *trans*-fused rings. The cyclohexene ring adopts a screw-boat conformation, the two cyclohexane rings are in standard chair and boat conformations, and the cyclopentane ring is in an envelope conformation. Weak intramolecular C-H···O interactions generate *S*(5) and *S*(6) ring motifs. A weak C-H···O intermolecular interaction connects the molecules into dimers.

Related literature

For hydrogen-bond motifs, see Bernstein *et al.* (1995). For values of bond lengths, see Allen *et al.* (1987). For ring conformations, see Cremer & Pople (1975). For limonoid compounds and activities, see, for example, Bickii *et al.* (2000); Khalid *et al.* (1998); Koul *et al.* (2003); Nihei *et al.* (2002); Penido, Conte *et al.* (2006); Penido, Costa *et al.* (2006); Saewan *et al.* (2006); Takeya *et al.* (1996).

Experimental

Crystal data

$C_{30}H_{36}O_8$	$V = 2681.5 (9) \text{ Å}^3$
$M_r = 524.59$	Z = 4
Drthorhombic, $P2_12_12$	Mo $K\alpha$ radiation
a = 12.189 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
p = 29.983 (5) Å	T = 297 (2) K
e = 7.3372 (11) Å	$0.39 \times 0.10 \times 0.07~\text{mm}$

Data collection

Bruker SMART APEXII CCD	
area-detector diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\rm min} = 0.965, T_{\rm max} = 0.994$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	351 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2724 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.98	2.45	2.900 (5)	107
0.98	2.31	2.705 (5)	103
0.98	2.54	2.936 (5)	104
0.96	2.51	3.422 (7)	160
0.96	2.53	3.121 (6)	120
0.96	2.29	2.973 (5)	127
	<i>D</i> -H 0.98 0.98 0.98 0.96 0.96 0.96	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.98 & 2.45 \\ 0.98 & 2.31 \\ 0.98 & 2.54 \\ 0.96 & 2.51 \\ 0.96 & 2.53 \\ 0.96 & 2.29 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) -x, -y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

SL, WM and TB thank Mae Fah Luang University and the Bioresources Research Network, National Center for Genetic and Engineering and Biotechnology (grant No. BRN 003 G-49), for partial financial support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/635003/A118.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2461).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bickii, J., Njifutie, N., Foyere, J. A., Basco, L. K. & Ringwald, P. (2000). J. Ethnopharmacol. 69, 27–33.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Khalid, S. A., Friedrichsen, G. M., Kharazmi, A., Theander, T. G., Olsen, C. E. & Christensen, S. B. (1998). *Phytochemistry*, 49, 1769–1772.
- Koul, O., Daniewski, W. M., Multani, J. S., Gumulka, M. & Singh, G. (2003). J. Agric. Food Chem. 51, 7271–7275.
- Nihei, K.-I., Hanke, F. J., Asaka, Y., Matsumoto, T. & Kubo, I. (2002). J. Agric. Food Chem. 50, 5048–5052.
- Penido, C., Conte, F., Chagas, M., Rodrigues, C., Pereira, J. & Henriques, M. (2006). Int. Immunopharmacol. 6, 109–121.
- Penido, C., Costa, K. A., Costa, M., Pereira, J. & Henriques, M. (2006). Inflamm. Res. 55, 457–464.
- Saewan, N., Sutherland, J. D. & Chantrapromma, K. (2006). *Phytochemistry*, 67, 2288–2293.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Takeya, K., Qiao, Z. S., Hirobe, C. & Itokawa, H. (1996). *Phytochemistry*, **42**, 709–712.

Acta Cryst. (2007). E63, o3583-o3584 [doi:10.1107/S1600536807035155]

60-Acetoxyepoxyazadiradione

W. Maneerat, H.-K. Fun, T. Buatip, S. Laphookhieo and S. Chantrapromma

Comment

Meliaceae plants are known to be rich sources of limonoids. Some of these limonoids posses significant pharmocological effects such as antimalarial (Bickii *et al.*, 2000; Saewan *et al.*, 2006), cytotoxic (Takeya *et al.*, 1996), antiprotozoal (Khalid *et al.*, 1998) and antifeedant activities (Koul *et al.*, 2003; Nihei *et al.*, 2002). *Chisocheton siamensis* or "Ta Sua" in a local Thai name, is one of the Meliaceae plants, which is found in the northern part of Thailand. As part of our study of chemical constituents and bioactive compounds from *C. siamensis*, we herein report the crystal structure of the title compound which was isolated for the first time from the seed of *C. siamensis* collected from Chiang Mai province in the northern part of Thailand. The title compound was found to posses anti-allergic (Penido, Costa *et al.*, (2006) and antiinflammatory (Penido, Conte *et al.*, (2006) activities.

The title molecule (Fig. 1) contains a four *trans*-fused rings, the cyclohexene ring adopts a screw boat conformation with the puckering parameters (Cremer & Pople, 1975) Q = 0.552 (4) Å, θ = 70.6 (5)° and φ = 276.7 (5)°, the two cyclohexane rings are in standard chair and boat conformations and the cyclopentane adopts an envelope conformation, with atom C17 displaced from the C13/C14/C15/C16 plane by 0.238 (4) Å. The oxirane moiety (C14/C15/O3) makes the dihedral angle of 78.0 (4)° with the mean plane of C13/C14/C15/C16. The furan ring is planar and attached to the cyclopentane ring at atom C17, the dihedral angle between the furan ring and the C13/C14/C15/C16 mean plane is 56.7 (3)°. The two acetate groups are planar and in *cis*-configuration with respect to the C6—C7 bond, the dihedral angle between the mean plane of these two acetate moieties is 44.4 (3)°(Fig.1). The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). In the structure, the weak C5—H5A···O7, C7—H7A···O8 and C9—H9A···O7 intramolecular interactions generate S(5) ring motifs, the C28—H28D···O5 and C29—H28D···O5 generate S(6) ring motifs (Bernstein *et al.*,1995), whereas the intermolecular C27—H27A···O2(–*x*, –*y*, *z*) interaction connects the molecules into dimers (Fig. 2).

Experimental

Seeds of *C. siamensis* (600 g) were extracted with hexane-acetone (1:1 V/V) over the period of 3 days at room temperature. The mixture was filtered and concentrated under reduced pressure to provide the crude extract (62.21 g). This crude extract was subjected to quick column chromatography (QCC) over silica gel and eluted with a gradient of EtOAc-hexane to afford 13 factions (A1—A13). Fraction A8 (1.01 g) was subjected to repeated column chromatography using 25% EtOAc-hexane to give compound (I) (17.2 mg). Colorless plate shaped single crystals of the title compound were recrystallization from EtOAc-hexane (1:2 V/V) solution, Mp 493 K decomposition.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with the C—H distances in the range 0.93–0.98 Å. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. A total of 2006 Friedel pairs were merged

before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration. The absolute configuration of the title compound was selected arbitrarily.

Figures

Fig. 1. The asymmetric unit of showing 40% probability displacement ellipsoids and the atomic numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal packing viewed along the c axis. Weak C—H···O interactions are shown as dash lines.

$(8S^*, 10R^*)$ -17-(3-furyl)-4,4,8,10,13-pentamethyl-3,16-dioxo-6,7,9,11,12,17- hexahydro-14,15-epoxy-5*H*-cyclopenta[*a*]phenanthrene-6 α ,7 α -diyl diacetate

C₃₀H₃₆O₈ $M_r = 524.59$ Orthorhombic, $P2_12_12$ Hall symbol: P 2 2ab a = 12.189 (3) Å b = 29.983 (5) Å c = 7.3372 (11) Å V = 2681.5 (9) Å³ Z = 4 $F_{000} = 1120$

$D_{\rm x} = 1.299 {\rm ~Mg~m}^{-3}$
Melting point: 493 K, decomposition K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2724 reflections
$\theta = 1.8 - 25.0^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 297 (2) K
Plate, colourless
$0.39 \times 0.10 \times 0.07 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2724 independent reflections
Radiation source: fine-focus sealed tube	1782 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.100$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 297(2) K	$\theta_{\min} = 1.8^{\circ}$

ω scans	$h = -14 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -35 \rightarrow 32$
$T_{\min} = 0.965, \ T_{\max} = 0.994$	$l = -8 \rightarrow 8$
20575 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.359P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.125$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
2724 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
351 parameters	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0128 (16)

methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.7277 (3)	0.20923 (12)	0.2888 (6)	0.0843 (11)
O2	-0.0801 (3)	0.04653 (14)	0.1717 (6)	0.0975 (13)
O3	-0.1807 (4)	0.1049 (2)	0.7665 (6)	0.1104 (15)
O4	0.0294 (3)	0.14448 (14)	0.0196 (5)	0.0819 (11)
05	0.4887 (2)	0.10007 (9)	-0.1064 (4)	0.0495 (7)
O6	0.4156 (3)	0.11150 (12)	-0.3842 (5)	0.0733 (10)
07	0.3165 (2)	0.08053 (8)	0.1306 (4)	0.0486 (7)
O8	0.2993 (4)	0.02858 (12)	-0.0864 (6)	0.1002 (13)
C1	0.4516 (4)	0.20161 (14)	0.4065 (6)	0.0577 (12)
H1A	0.4052	0.2069	0.5048	0.069*
C2	0.5586 (4)	0.20273 (15)	0.4328 (7)	0.0631 (13)

H2A	0.5858	0.2091	0.5484	0.076*
C3	0.6344 (4)	0.19424 (15)	0.2850 (7)	0.0586 (13)
C4	0.5981 (3)	0.16439 (13)	0.1284 (6)	0.0479 (11)
C5	0.4730 (3)	0.15332 (13)	0.1422 (5)	0.0412 (9)
H5A	0.4674	0.1289	0.2305	0.049*
C6	0.4207 (3)	0.13562 (13)	-0.0334 (6)	0.0425 (10)
H6A	0.4157	0.1598	-0.1228	0.051*
C7	0.3065 (3)	0.11623 (13)	0.0000 (6)	0.0454 (10)
H7A	0.2764	0.1047	-0.1145	0.054*
C8	0.2303 (3)	0.15175 (13)	0.0774 (6)	0.0453 (11)
C9	0.2831 (3)	0.17297 (13)	0.2505 (6)	0.0488 (11)
H9A	0.2926	0.1480	0.3353	0.059*
C10	0.4017 (3)	0.19194 (12)	0.2214 (6)	0.0438 (10)
C11	0.2019 (4)	0.20428 (15)	0.3457 (7)	0.0661 (13)
H11A	0.2360	0.2158	0.4555	0.079*
H11B	0.1872	0.2294	0.2661	0.079*
C12	0.0927 (4)	0.18242 (15)	0.3972 (7)	0.0664 (13)
H12A	0.0838	0.1841	0.5284	0.080*
H12B	0.0335	0.1994	0.3423	0.080*
C13	0.0817 (3)	0.13369 (15)	0.3387 (6)	0.0509 (11)
C14	0.1178 (3)	0.13163 (15)	0.1389 (6)	0.0525 (11)
C15	0.0509 (4)	0.0982 (2)	0.0452 (8)	0.0765 (16)
H15A	0.0804	0.0794	-0.0523	0.092*
C16	-0.0310 (4)	0.08116 (19)	0.1807 (7)	0.0706 (14)
C17	-0.0398 (3)	0.11626 (16)	0.3268 (6)	0.0574 (12)
H17A	-0.0844	0.1406	0.2773	0.069*
C18	0.1430 (4)	0.10127 (17)	0.4612 (7)	0.0669 (14)
H18A	0.2196	0.1087	0.4621	0.100*
H18B	0.1338	0.0715	0.4160	0.100*
H18C	0.1144	0.1031	0.5828	0.100*
C19	0.4068 (4)	0.23638 (13)	0.1148 (7)	0.0655 (14)
H19A	0.4793	0.2487	0.1237	0.098*
H19B	0.3549	0.2570	0.1655	0.098*
H19C	0.3893	0.2310	-0.0109	0.098*
C20	-0.0921(4)	0.10193 (18)	0.5024 (7)	0.0623 (13)
C21	-0.0981(4)	0.0586 (2)	0 5791 (8)	0.0827 (16)
H21A	-0.0702	0.0326	0 5279	0.099*
C22	-0.1507(5)	0.0618(3)	0.7375 (10)	0.100(2)
H22A	-0.1647	0.0382	0.8163	0.119*
C23	-0.1448(5)	0.0302 0.1283(2)	0.6193 (9)	0.0912 (18)
H23A	-0.1557	0.1587	0.6025	0.109*
C24	0.1997 0 4794 (4)	0.09201 (16)	-0.2885(7)	0.0582(12)
C25	0.5585(4)	0.05201(10) 0.05754(19)	-0.3489(8)	0.0852(12)
H25A	0 5334	0.0444	-0.4606	0.128*
H25B	0 5645	0.0349	-0.2570	0.128*
H25C	0.6290	0.0710	-0.3680	0.120
C26	0.3122 (4)	0.03785 (17)	0.0706 (9)	0.120
C20	0.3122(7) 0.3269(5)	0.05705(17) 0.00620(17)	0.0700(9)	0.0007(14) 0.0801(17)
U27 H27A	0.5209 (5)	-0.0108	0.2230 (0)	0.13/*
112/17	0.2009	0.0100	0.2424	0.134

H27B	0.3425	0.0227	0.3350	0.134*
H27C	0.3868	-0.0136	0.1999	0.134*
C28	0.6329 (4)	0.18517 (16)	-0.0557 (7)	0.0642 (14)
H28A	0.7092	0.1930	-0.0510	0.096*
H28B	0.5900	0.2114	-0.0785	0.096*
H28D	0.6211	0.1640	-0.1517	0.096*
C29	0.6656 (3)	0.12137 (14)	0.1587 (7)	0.0639 (14)
H29A	0.7420	0.1276	0.1397	0.096*
H29D	0.6420	0.0989	0.0741	0.096*
H29B	0.6548	0.1109	0.2810	0.096*
C30	0.2062 (4)	0.18580 (15)	-0.0755 (7)	0.0623 (13)
H30D	0.2742	0.1970	-0.1234	0.093*
H30A	0.1640	0.2101	-0.0270	0.093*
H30B	0.1657	0.1715	-0.1712	0.093*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.060 (2)	0.090 (2)	0.103 (3)	-0.0292 (19)	-0.007 (2)	-0.020 (2)
O2	0.083 (2)	0.112 (3)	0.098 (3)	-0.040 (2)	0.014 (2)	-0.026 (3)
O3	0.102 (3)	0.148 (4)	0.081 (3)	-0.035 (3)	0.029 (3)	-0.017 (3)
O4	0.0501 (18)	0.126 (3)	0.069 (2)	-0.006 (2)	-0.0200 (18)	0.018 (2)
O5	0.0452 (16)	0.0519 (16)	0.0514 (18)	-0.0011 (13)	0.0003 (14)	-0.0054 (15)
O6	0.078 (2)	0.089 (2)	0.052 (2)	-0.001 (2)	-0.0079 (19)	-0.0021 (19)
07	0.0501 (15)	0.0375 (16)	0.0581 (18)	-0.0025 (13)	-0.0017 (15)	0.0014 (15)
O8	0.137 (4)	0.066 (2)	0.098 (3)	-0.015 (2)	-0.007 (3)	-0.027 (2)
C1	0.065 (3)	0.052 (3)	0.056 (3)	-0.011 (2)	0.001 (2)	-0.011 (2)
C2	0.072 (3)	0.063 (3)	0.054 (3)	-0.021 (3)	-0.012 (3)	-0.004 (3)
C3	0.058 (3)	0.051 (3)	0.067 (3)	-0.014 (2)	-0.013 (3)	0.000 (3)
C4	0.043 (2)	0.046 (2)	0.054 (3)	-0.007 (2)	0.001 (2)	0.002 (2)
C5	0.041 (2)	0.039 (2)	0.044 (2)	-0.0046 (18)	-0.003 (2)	0.000 (2)
C6	0.046 (2)	0.037 (2)	0.045 (2)	0.0048 (19)	0.0000 (19)	-0.002 (2)
C7	0.040 (2)	0.048 (2)	0.048 (3)	-0.0015 (19)	-0.003 (2)	0.004 (2)
C8	0.043 (2)	0.047 (2)	0.046 (2)	0.004 (2)	-0.005 (2)	0.003 (2)
C9	0.049 (2)	0.045 (2)	0.052 (3)	0.001 (2)	0.000 (2)	-0.004 (2)
C10	0.047 (2)	0.038 (2)	0.047 (3)	-0.0009 (19)	-0.005 (2)	-0.004 (2)
C11	0.065 (3)	0.058 (3)	0.075 (3)	0.001 (2)	0.009 (3)	-0.016 (3)
C12	0.059 (3)	0.068 (3)	0.072 (3)	0.004 (2)	0.006 (3)	-0.008 (3)
C13	0.040 (2)	0.058 (3)	0.055 (3)	0.002 (2)	-0.005 (2)	-0.003 (2)
C14	0.043 (2)	0.064 (3)	0.051 (3)	0.002 (2)	-0.006 (2)	0.001 (2)
C15	0.059 (3)	0.105 (5)	0.065 (3)	-0.023 (3)	0.001 (3)	-0.028 (3)
C16	0.049 (3)	0.093 (4)	0.069 (3)	-0.018 (3)	0.005 (3)	-0.014 (3)
C17	0.037 (2)	0.073 (3)	0.062 (3)	0.002 (2)	-0.001 (2)	0.000 (3)
C18	0.050 (3)	0.089 (4)	0.062 (3)	-0.005 (3)	-0.006 (2)	0.018 (3)
C19	0.066 (3)	0.037 (2)	0.093 (4)	-0.003 (2)	0.001 (3)	0.006 (3)
C20	0.042 (2)	0.078 (4)	0.067 (3)	-0.003 (3)	0.000 (2)	-0.005 (3)
C21	0.066 (3)	0.098 (4)	0.084 (4)	-0.003 (3)	0.003 (3)	0.015 (4)
C22	0.078 (4)	0.130 (6)	0.091 (5)	-0.033 (4)	-0.004 (4)	0.028 (5)

C23	0.088 (4)	0.101 (4)	0.085 (4)	-0.019 (3)	0.037 (4)	-0.013 (4)	
C24	0.052 (3)	0.064 (3)	0.058 (3)	-0.010 (2)	0.002 (3)	-0.010 (3)	
C25	0.086 (4)	0.088 (4)	0.082 (4)	0.005 (3)	0.010 (3)	-0.030 (3)	
C26	0.065 (3)	0.051 (3)	0.090 (4)	-0.007 (2)	-0.007 (3)	-0.010 (3)	
C27	0.092 (4)	0.054 (3)	0.122 (4)	-0.004 (3)	-0.009 (4)	0.020 (4)	
C28	0.055 (3)	0.069 (3)	0.069 (3)	-0.013 (2)	-0.001 (2)	0.013 (3)	
C29	0.048 (2)	0.057 (3)	0.086 (4)	0.001 (2)	-0.013 (3)	-0.001 (3)	
C30	0.058 (3)	0.060 (3)	0.069 (3)	0.010(2)	-0.003 (2)	0.006 (3)	
Geometric para	meters (Å, °)						
O1—C3		1.224 (5)	C12—H12B		0.970)0	
O2—C16		1.200 (6)	C13-	C18	1.520	1.520 (6)	
O3—C22		1.359 (8)	C13-	C14	1.532	2 (6)	
O3—C23		1.360 (7)	C13-	C17	1.573	3 (6)	
O4—C15		1.424 (7)	C14-	C15	1.464	4 (6)	
O4—C14		1.440 (5)	C15-	C16	1.499	9 (7)	
O5—C24		1.362 (5)	C15-	-H15A	0.980	00	
O5—C6		1.453 (5)	C16-	C17	1.500	5(7)	
O6—C24		1.199 (5)	C17-	C20	1.500)(7)	
O7—C26		1.354 (6)	C17-	-H17A	0.980	00	
O7—C7		1.442 (5)	C18-	I8_H18A 0.0600		00	
08—C26		1.195 (6)	C18-	-H18B	3 0 9600		
C1-C2		1 319 (6)	C18-	-H18C	18C 0.9600		
C1-C10		1.516 (6)	C19-	-H19A	0.9600		
C1—H1A		0.9300	C19-	-H19B	0.9600		
C2—C3		1.447 (7)	C19-	-H19C	0.9600		
C2—H2A		0.9300	C20-	-C23	1.33	(7)	
C3—C4		1.522 (6)	C20-	C21	1.419	9(7)	
C4—C29		1.546 (6)	C21-	C22	1 331 (8)		
C4—C28		1.547 (6)	C21-	-H21A	0.930)0	
C4—C5		1.564 (5)	C22-	-H22A	0.930)0	
C5—C6		1.532 (5)	C23-	-H23A	0.930	00	
C5—C10		1.560 (5)	C24-	-C25	1.482	2(7)	
С5—Н5А		0.9800	C25-	-H25A	0.960)0	
C6—C7		1 528 (5)	C25-	-H25B	0.960)0	
С6—Н6А		0.9800	C25-	-H25C	0.960	00	
C7—C8		1.523 (6)	C26-		1 493 (7)		
С7—Н7А		0.9800	C27-	–H27A	1.475 (7) 0.9600		
C8—C30		1 545 (6)	C27-	C27—H27B 0.960)0	
C8—C9		1.559 (6)	C27-	127C 0 9600		00	
C8—C14		1.564 (6)	C28—H28A 0 9600		00		
C9—C11		1.532 (6)	C28-	–H28B	0.9600		
C9—C10		1.568 (6)	C28-	-H28D	0.960)0	
С9—Н9А		0.9800	C29-	-H29A	0.9600		
C10—C19		1.546 (6)	C29-	-H29D	0.9600		
C11—C12		1.531 (6)	C29-	-H29B	0.960)0	
C11—H11A		0.9700	C30-	-H30D	0.960)0	
C11—H11B		0.9700	C30-	-H30A	0.960	00	

C12—C13	1.529 (6)	С30—Н30В	0.9600
C12—H12A	0.9700		
C22—O3—C23	106.2 (5)	C15—C14—C8	128.1 (4)
C15—O4—C14	61.5 (3)	C13—C14—C8	120.8 (3)
C24—O5—C6	116.4 (3)	O4—C15—C14	59.8 (3)
C26—O7—C7	118.8 (4)	O4—C15—C16	107.3 (5)
C2-C1-C10	122.2 (4)	C14—C15—C16	107.0 (4)
C2—C1—H1A	118.9	O4—C15—H15A	122.2
C10-C1-H1A	118.9	C14—C15—H15A	122.2
C1—C2—C3	121.1 (5)	С16—С15—Н15А	122.2
C1—C2—H2A	119.4	O2-C16-C15	126.2 (5)
C3—C2—H2A	119.4	O2—C16—C17	127.5 (5)
O1—C3—C2	120.8 (5)	C15—C16—C17	106.3 (4)
O1—C3—C4	120.2 (5)	C20—C17—C16	116.2 (4)
C2—C3—C4	118.9 (4)	C20-C17-C13	116.6 (4)
C3—C4—C29	103.2 (4)	C16—C17—C13	101.8 (3)
C3—C4—C28	110.0 (3)	С20—С17—Н17А	107.2
C29—C4—C28	108.4 (4)	С16—С17—Н17А	107.2
C3—C4—C5	111.1 (4)	С13—С17—Н17А	107.2
C29—C4—C5	109.4 (3)	C13—C18—H18A	109.5
C28—C4—C5	114.1 (4)	C13—C18—H18B	109.5
C6—C5—C10	109.8 (3)	H18A—C18—H18B	109.5
C6—C5—C4	115.2 (3)	C13—C18—H18C	109.5
C10—C5—C4	114.2 (3)	H18A—C18—H18C	109.5
С6—С5—Н5А	105.6	H18B—C18—H18C	109.5
С10—С5—Н5А	105.6	С10—С19—Н19А	109.5
C4—C5—H5A	105.6	C10-C19-H19B	109.5
O5—C6—C7	107.4 (3)	H19A—C19—H19B	109.5
O5—C6—C5	109.1 (3)	С10—С19—Н19С	109.5
C7—C6—C5	112.1 (3)	H19A—C19—H19C	109.5
O5—C6—H6A	109.4	H19B—C19—H19C	109.5
С7—С6—Н6А	109.4	C23—C20—C21	105.3 (5)
С5—С6—Н6А	109.4	C23—C20—C17	126.1 (5)
07—C7—C8	108.8 (3)	C21—C20—C17	128.7 (5)
O7—C7—C6	108.2 (3)	C22—C21—C20	107.7 (6)
C8—C7—C6	110.5 (3)	C22—C21—H21A	126.1
07—С7—Н7А	109.8	C20—C21—H21A	126.1
С8—С7—Н7А	109.8	C21—C22—O3	109.6 (6)
С6—С7—Н7А	109.8	C21—C22—H22A	125.2
C7—C8—C30	107.9 (3)	O3—C22—H22A	125.2
C7—C8—C9	109.7 (3)	C20—C23—O3	111.1 (6)
C30—C8—C9	113.6 (3)	С20—С23—Н23А	124.4
C7—C8—C14	111.9 (3)	O3—C23—H23A	124.4
C30—C8—C14	107.3 (3)	06—C24—O5	122.8 (4)
C9—C8—C14	106.5 (3)	06-C24-C25	125.9 (5)
C11—C9—C8	110.8 (3)	05	111.3 (5)
C11—C9—C10	115.8 (3)	С24—С25—Н25А	109.5
C8—C9—C10	114.7 (3)	C24—C25—H25B	109.5
С11—С9—Н9А	104.7	H25A—C25—H25B	109.5

С8—С9—Н9А	104.7	C24—C25—H25C	109.5
С10—С9—Н9А	104.7	H25A—C25—H25C	109.5
C1—C10—C19	105.8 (3)	H25B—C25—H25C	109.5
C1—C10—C5	104.6 (3)	O8—C26—O7	122.5 (5)
C19—C10—C5	115.4 (4)	O8—C26—C27	127.1 (5)
C1—C10—C9	108.5 (3)	O7—C26—C27	110.4 (5)
C19—C10—C9	114.7 (3)	С26—С27—Н27А	109.5
C5-C10-C9	107.2 (3)	С26—С27—Н27В	109.5
C12—C11—C9	114.3 (4)	H27A—C27—H27B	109.5
C12—C11—H11A	108.7	С26—С27—Н27С	109.5
С9—С11—Н11А	108.7	H27A—C27—H27C	109.5
C12—C11—H11B	108.7	H27B—C27—H27C	109.5
C9—C11—H11B	108.7	C4—C28—H28A	109.5
H11A—C11—H11B	107.6	C4—C28—H28B	109.5
C13—C12—C11	114.6 (4)	H28A—C28—H28B	109.5
C13—C12—H12A	108.6	C4—C28—H28D	109.5
C11—C12—H12A	108.6	H28A—C28—H28D	109.5
C13—C12—H12B	108.6	H28B—C28—H28D	109.5
C11—C12—H12B	108.6	С4—С29—Н29А	109.5
H12A—C12—H12B	107.6	C4—C29—H29D	109.5
C18—C13—C12	113.7 (4)	H29A—C29—H29D	109.5
C18—C13—C14	113.5 (4)	С4—С29—Н29В	109.5
C12-C13-C14	106.4 (4)	H29A—C29—H29B	109.5
C18—C13—C17	106.4 (4)	H29D—C29—H29B	109.5
C12—C13—C17	114.6 (4)	C8—C30—H30D	109.5
C14—C13—C17	101.8 (3)	С8—С30—Н30А	109.5
O4—C14—C15	58.7 (3)	H30D-C30-H30A	109.5
O4—C14—C13	110.9 (3)	C8—C30—H30B	109.5
C15-C14-C13	108.5 (4)	H30D-C30-H30B	109.5
O4—C14—C8	112.2 (3)	H30A—C30—H30B	109.5
C10—C1—C2—C3	-0.6 (7)	C11—C12—C13—C14	-47.8 (5)
C1—C2—C3—O1	155.2 (5)	C11—C12—C13—C17	-159.4 (4)
C1—C2—C3—C4	-27.8 (7)	C15-04-C14-C13	-99.5 (4)
O1—C3—C4—C29	68.6 (5)	C15—O4—C14—C8	122.1 (4)
C2—C3—C4—C29	-108.4 (4)	C18—C13—C14—O4	151.9 (4)
O1—C3—C4—C28	-46.8 (6)	C12-C13-C14-O4	-82.3 (4)
C2—C3—C4—C28	136.1 (4)	C17—C13—C14—O4	37.9 (5)
O1—C3—C4—C5	-174.2 (4)	C18-C13-C14-C15	89.2 (4)
C2—C3—C4—C5	8.8 (6)	C12-C13-C14-C15	-145.0 (4)
C3—C4—C5—C6	162.7 (3)	C17—C13—C14—C15	-24.8 (5)
C29—C4—C5—C6	-84.1 (4)	C18-C13-C14-C8	-73.9 (5)
C28—C4—C5—C6	37.6 (5)	C12-C13-C14-C8	51.9 (5)
C3—C4—C5—C10	34.3 (5)	C17—C13—C14—C8	172.1 (4)
C29—C4—C5—C10	147.6 (4)	C7—C8—C14—O4	-108.7 (4)
C28—C4—C5—C10	-90.8 (4)	C30—C8—C14—O4	9.4 (5)
C24—O5—C6—C7	82.0 (4)	C9—C8—C14—O4	131.4 (4)
C24—O5—C6—C5	-156.3 (3)	C7—C8—C14—C15	-41.9 (6)
C10—C5—C6—O5	179.4 (3)	C30—C8—C14—C15	76.3 (6)
C4—C5—C6—O5	48.8 (4)	C9—C8—C14—C15	-161.8 (5)

C10—C5—C6—C7	-61.8 (4)	C7—C8—C14—C13	117.6 (4)
C4—C5—C6—C7	167.7 (3)	C30-C8-C14-C13	-124.2 (4)
C26—O7—C7—C8	136.6 (4)	C9—C8—C14—C13	-2.3 (5)
C26—O7—C7—C6	-103.4 (4)	C14	100.0 (4)
O5—C6—C7—O7	60.8 (4)	C13—C14—C15—O4	103.7 (4)
C5—C6—C7—O7	-59.0 (4)	C8—C14—C15—O4	-94.8 (5)
O5—C6—C7—C8	179.8 (3)	O4-C14-C15-C16	-100.5 (5)
C5—C6—C7—C8	60.1 (4)	C13-C14-C15-C16	3.2 (6)
O7—C7—C8—C30	-171.2 (3)	C8-C14-C15-C16	164.7 (4)
C6—C7—C8—C30	70.2 (4)	O4—C15—C16—O2	137.6 (6)
O7—C7—C8—C9	64.6 (4)	C14—C15—C16—O2	-159.5 (5)
C6—C7—C8—C9	-54.0 (4)	O4—C15—C16—C17	-41.7 (5)
O7—C7—C8—C14	-53.4 (4)	C14—C15—C16—C17	21.2 (6)
C6—C7—C8—C14	-172.0 (3)	O2-C16-C17-C20	17.0 (8)
C7—C8—C9—C11	-172.5 (3)	C15-C16-C17-C20	-163.7 (4)
C30-C8-C9-C11	66.8 (5)	O2-C16-C17-C13	144.8 (5)
C14—C8—C9—C11	-51.2 (4)	C15-C16-C17-C13	-35.9 (5)
C7—C8—C9—C10	54.2 (4)	C18—C13—C17—C20	44.8 (5)
C30-C8-C9-C10	-66.6 (5)	C12—C13—C17—C20	-81.8 (5)
C14—C8—C9—C10	175.5 (3)	C14—C13—C17—C20	163.9 (4)
C2-C1-C10-C19	-80.6 (5)	C18—C13—C17—C16	-82.7 (5)
C2-C1-C10-C5	41.7 (5)	C12-C13-C17-C16	150.7 (4)
C2-C1-C10-C9	155.8 (4)	C14—C13—C17—C16	36.4 (5)
C6—C5—C10—C1	171.7 (3)	C16-C17-C20-C23	-153.2 (5)
C4—C5—C10—C1	-57.3 (4)	C13—C17—C20—C23	86.7 (6)
C6—C5—C10—C19	-72.5 (4)	C16—C17—C20—C21	25.9 (7)
C4—C5—C10—C19	58.5 (5)	C13—C17—C20—C21	-94.2 (6)
C6—C5—C10—C9	56.6 (4)	C23—C20—C21—C22	-1.6 (6)
C4—C5—C10—C9	-172.3 (3)	C17—C20—C21—C22	179.0 (5)
C11-C9-C10-C1	61.7 (5)	C20—C21—C22—O3	0.9 (6)
C8—C9—C10—C1	-167.3 (3)	C23—O3—C22—C21	0.2 (7)
C11-C9-C10-C19	-56.3 (5)	C21—C20—C23—O3	1.8 (6)
C8—C9—C10—C19	74.7 (4)	C17—C20—C23—O3	-178.9 (4)
C11—C9—C10—C5	174.2 (4)	C22—O3—C23—C20	-1.3 (7)
C8—C9—C10—C5	-54.8 (4)	C6—O5—C24—O6	-3.1 (6)
C8—C9—C11—C12	55.8 (5)	C6—O5—C24—C25	175.7 (3)
C10-C9-C11-C12	-171.4 (4)	C7—O7—C26—O8	-0.7 (7)
C9—C11—C12—C13	-2.1 (6)	C7—O7—C26—C27	178.6 (4)
C11—C12—C13—C18	77.9 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
С5—Н5А…О7	0.98	2.45	2.900 (5)	107
С7—Н7А…О8	0.98	2.31	2.705 (5)	103
С9—Н9А…О7	0.98	2.54	2.936 (5)	104
C27—H27A···O2 ^{i}	0.96	2.51	3.422 (7)	160
C28—H28D···O5	0.96	2.53	3.121 (6)	120
C29—H29D…O5	0.96	2.29	2.973 (5)	127

Symmetry codes: (i) -x, -y, z.

Fig. 1

